Learning-based image restoration for compressed images
نویسندگان
چکیده
In this paper, we propose a novel learning-based image restoration scheme for compressed images by suppressing compression artifacts and recovering high frequency (HF) components based upon the priors learnt from a training set of natural images. The JPEG compression process is simulated by a degradation model, represented by the signal attenuation and the Gaussian noise addition process. Based on the degradation model, the input image is locally filtered to remove Gaussian noise. Subsequently, the learning-based restoration algorithm reproduces the HF component to handle the attenuation process. Specifically, a Markov-chain based mapping strategy is employed to generate the HF primitives based on the learnt codebook. Finally, a quantization constraint algorithm regularizes the reconstructed image coefficients within a reasonable range, to prevent possible over-smoothing and thus ameliorate the image quality. Experimental results have demonstrated that the proposed scheme can reproduce higher quality images in terms of both objective and subjective quality. & 2011 Elsevier B.V. All rights reserved.
منابع مشابه
Deblocking Joint Photographic Experts Group Compressed Images via Self-learning Sparse Representation
JPEG is one of the most widely used image compression method, but it causes annoying blocking artifacts at low bit-rates. Sparse representation is an efficient technique which can solve many inverse problems in image processing applications such as denoising and deblocking. In this paper, a post-processing method is proposed for reducing JPEG blocking effects via sparse representation. In this ...
متن کاملSingular Value Decomposition based Steganography Technique for JPEG2000 Compressed Images
In this paper, a steganography technique for JPEG2000 compressed images using singular value decomposition in wavelet transform domain is proposed. In this technique, DWT is applied on the cover image to get wavelet coefficients and SVD is applied on these wavelet coefficients to get the singular values. Then secret data is embedded into these singular values using scaling factor. Different com...
متن کاملLearning-Based Image Restoration for Compressed Image through Neighboring Embedding
In this paper, we propose a novel learning-based image restoration scheme for compressed images by suppressing compression artifacts and recovering high frequency components with the priors learned from a training set of natural images. Specifically, Deblocking is performed to alleviate the blocking artifacts. Moreover, consistency of the primitives is enhanced by estimating the high frequency ...
متن کاملAn Accelerated Proximal Gradient Algorithm for Frame-Based Image Restoration via the Balanced Approach
Frame-based image restoration by using balanced approach has been developed over the last decade. Many recently developed algorithms for image restoration can be viewed as an acceleration of the proximal forward-backward splitting algorithm. Accelerated proximal gradient algorithms studied by Nesterov, Nemirovski, and others have been demonstrated to be efficient in solving various regularized ...
متن کاملImage Restoration by Variable Splitting based on Total Variant Regularizer
The aim of image restoration is to obtain a higher quality desired image from a degraded image. In this strategy, an image inpainting method fills the degraded or lost area of the image by appropriate information. This is performed in such a way so that the obtained image is undistinguishable for a casual person who is unfamiliar with the original image. In this paper, different images are degr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Sig. Proc.: Image Comm.
دوره 27 شماره
صفحات -
تاریخ انتشار 2012